cnenjpkr

新闻动态

行业资讯

您当前的位置:首页 > 新闻动态 > 行业资讯 > 详解生物类似药技术门...

详解生物类似药技术门槛

作者:   上传日期:2016-04-12  阅读次数:

与化学仿制药相比,生物类似药虽然也属于仿制药范畴,但其不仅投资门槛更高,技术门槛也更高。今年初一篇题为“生物制药——仿制成功也是高科技的NB行业”的报道,标题虽然简单粗暴了些,但也道出了实情——生物药仿制也不是一件容易的事。

三大技术门槛

笔者认为,生物类似药的技术门槛高至少表现在三大方面:
一是有关生产、制造过程和工艺流程。在产品生产过程中,有多种因素可能会影响到生物类似药的质量,如分子设计、表达系统、细胞株类型、翻译后修饰(PTM)、不纯物和污染物、配方和辅料、包装容器、生产过程中的蛋白降解等。
二是对生物类似药在质量、安全性和有效性(QSE)等方面进行分析检测、表征,需要在临床试验前在蛋白的多种性质上与原研药参考品一致。这种一致性,根据欧盟EMA的要求需要“相似”(similar)。而根据美国FDA的要求则需要“高度相似”(highly similar)。如果是可以自动替换(interchangeable)的生物类似药,其要求更高。
上面两大高门槛对于中国药企而言更是意味着投资的高门槛,因为无论是上下游的工艺开发、生产还是分析方法开发、质量检测,所需仪器设备甚至耗材几乎都需要进口。
第三个方面是生物原研药的专利壁垒。生物药的专利要远比化学药复杂,这个高门槛很容易被投资人忽视。艾伯维(Abbvie)和安进(Amgen)因Humira(修美乐)的生物类似药的专利之战仅仅是一个例子。现在风头正劲的免疫肿瘤抗体药(尤其是已经上市的两个PD-1抗体药)以后很可能成为被仿制的热点目标,但免疫肿瘤领域近期多起专利诉讼也说明:即使是做原研生物药,专利问题也需要防范。
出于工作关系和个人兴趣,笔者本文仅谈谈生物类似药的分析技术。如表格所示,生物类似药的表征分析,涉及许多生物化学和生物物理技术,笔者对于大多数技术略知一二,本文无意具体谈这些分析技术的细节和难度,而只是通过简单评论这些技术手段,试图说明进入生物类似药的门槛很高。

质控蛋白三大性质

与评价化学药类似,对于生物药的评价,质量、安全性和有效性可以说是最重要的三个方面,而质量又是安全性和有效性的前提和基础。
对于生物药的质量,FDA认为治疗性蛋白的三大方面性质虽然不能被完全充分测定,但对于评价蛋白药是非常重要的,这三大性质即:PTM、蛋白高级结构和蛋白聚集,下面将分别简单介绍。

蛋白的翻译后修饰(PTM)

蛋白的翻译后修饰(PTM)有很多种,常见的包括糖基化(又可细分为:半乳糖苷基化、岩藻糖基化、唾液酸糖苷化等)、氧化、磷酸化、硫酸化、脂化、二硫键形成和脱酰胺。这些化学变化大多是在细胞内发生的,但有些也可能发生在生产的各个阶段(如纯化和储存过程)。
现在的科学研究已经表明,蛋白的PTM会影响蛋白的活性和免疫原性。蛋白的PTM还可能改变蛋白的结构进而引起聚集,从而进一步影响蛋白的免疫原性。
因此,需要在蛋白类药物生产的各个阶段对蛋白质的PTM进行检测。对于单一成分的纯化蛋白药,PTM的检测和监测则相对容易一些。而对于含有许多种蛋白质的复杂混合物蛋白药物(如有些预防性疫苗),即使是采用蛋白质组学技术,检测所有蛋白的PTM也是非常大的挑战。
研究蛋白PTM的最有力的利器当是生物质谱了,主要是基于电喷雾(ESI)和基质辅助激光解离(MALDI)两种技术。近年来,质谱在生物类似药领域的应用明显增多,在近几年的美国质谱协会会议上,每年都有不少口头报告或墙报是直接用质谱研究生物类似药PTM的,其中糖基化研究占比最大。
但是,由于生物质谱价格昂贵,动辄几十万美元,高端的售价甚至在50万美元以上,这也限制了生物质谱在包括生物类似药在内的生物制药领域的应用。
蛋白的高级结构
蛋白的高级结构是指蛋白的二级、三级和四级结构,这些结构特性决定了蛋白的三维空间结构,进而最终决定了蛋白的功能和活性。因此,比较生物类似药(指蛋白药)和原研药的蛋白高级结构,是证明两只药相似的重要手段。
X-射线衍射和核磁共振(NMR)是公认的测定蛋白质三维空间结构的两种最主要的技术。但是,对于生物类似药和原研药的结构相似性研究,这两种技术都有很大的挑战。
对于X-射线衍射而言,需要耗时较长的蛋白结晶过程和数据解析过程,对于样品量较大的工业界而言,显然不能满足高通量的要求。而NMR不但价格昂贵、灵敏度相对较低、数据分析耗时长,对于分析分子量达150kDa的大分子抗体药也面临很大的挑战,所以NMR在生物类似药领域注定应用非常有限。
另外,还有其它一些经典生物物理技术被用于表征蛋白的结构,如圆二色性谱、傅里叶变换红外光谱、荧光光谱、差示扫描量热法、分析超速离心、排阻色谱以及各种染料结合鉴别技术等。这些技术一个最主要的限制,就是只能检测来自蛋白不同部位的某一种总的信号。从这些测定得到的信息只能得到生物药整个结构的总的平均值。比如:圆二色性谱测定就只能表明某一种主要的二级结构(α螺旋、b折叠和无规卷曲)的平均百分比。如果一个含有多个α螺旋结构的蛋白,其中只有一个α螺旋结构和另一蛋白相比发生了变化,但是即使这一变化相对较大,被另外不变的α螺旋平均以后,圆二色性谱所能测到的变化也可能很小,甚至没有可以测量出的变化。所以这些经典生物物理技术不能用于检测生物药很小的结构变化。
更灵敏的技术则是氢氘交换质谱(HDX-MS),这也进一步显示质谱技术在比较生物类似药和原研药结构方面的重要性。现代生物质谱技术在生物药领域的应用已经远不仅仅是做蛋白质鉴定、分子量测定、氨基酸序列测定,蛋白结构只是其多种新应用的一个方面。

蛋白聚集

蛋白聚集是蛋白药生产过程中很头疼的问题,尤其是对于高浓度的蛋白溶液,很容易引起蛋白聚集。单体蛋白的聚集过程可以是可逆的,也可能是不可逆的,其聚集后的大小可以从二聚体到包含上万亿个蛋白单体的肉眼可见的颗粒。
总的来说,蛋白聚集对于任何蛋白药都是问题。蛋白聚集不但会降低蛋白药的有效剂量,更大的问题是可能会引起毒副作用和免疫反应。一般而言,蛋白分子量越大,其免疫原性越强。在某些特殊情况下,这些难以预料的副作用甚至可能是致命的。
因此,蛋白聚集必须被检测、定量和表征,用以比较生物类似药和原研药。如表中所示,表征蛋白聚集的主要分析技术包括排阻-高效(压)液相色谱(SEC-HPLC)、凝胶电泳、分析超速离心、光散射法等。
由于简单、易用、廉价、快速、样品用量少等特点,SEC-HPLC是目前检测蛋白聚集的最常用方法。当然,SEC-HPLC也有自己的缺点,如较大的蛋白聚体可能在进样上柱时就被除去,造成假阴性。
这也进一步说明,没有任何一种十全十美的分析技术。正是缘于此,美国FDA和ICH(国际人用药注册技术协调会议)都建议生物类似药研发企业不但要检测蛋白不同种性质,也建议采用多种技术检测同一种性质,以尽量得到更全面的生物类似药和原研药可以比较的多种信息,如理化性质、生物活性、免疫化学性质、纯度、不纯物和污染物等。

本文为网络转载,如有侵权请联系删除。

上一篇:靶向小分子,目标大市场

下一篇:美迪西药代动力学研究